
Simulink® Compiler™
User's Guide

R2020b

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Simulink® Compiler™ User's Guide
© COPYRIGHT 2020 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.
Revision History
March 2020 Online only New for Version 1.0 (Release 2020a)
September 2020 Online only Revised for Version 1.1 (Release 2020b)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Simulink Compiler
1

Deploy an App Designer Simulation with Simulink Compiler 1-2
Deploying A Simulation App with Simulink Compiler 1-2
Running the Deployed Application . 1-6

Deploying A Simulation App with Simulink Compiler 1-8

Deploy Simulations with Tunable Parameters . 1-12
Prepare a Script to Deploy Simulations with Parameter Tuning 1-12

Comparing Simulink Coder and Simulink Compiler 1-15
Differences . 1-15
Common Questions about Simulink Compiler and Simulink Coder 1-15

Rapid Accelerator Limitations . 1-17
Rapid Accelerator Mode . 1-17
Limitations . 1-17

Debug an Application for Deployment . 1-19
Debug Application in Simulink . 1-19
Debug Application . 1-19

Export Simulink Model to Standalone FMU . 1-20

Generate, Modify and Deploy a MATLAB App for a Simulink Model 1-24
Generate and Deploy a MATLAB App for a Model 1-24

Generate and Deploy a MATLAB App for a Model 1-30

Simulation Callbacks for Deployable Applications 1-35
Deploy an App with Live Simulation Results of Lorenz System 1-35

Deploy an App with Live Simulation Results of Lorenz System 1-40

iii

Contents

Simulink Compiler

• “Deploy an App Designer Simulation with Simulink Compiler” on page 1-2
• “Deploying A Simulation App with Simulink Compiler” on page 1-8
• “Deploy Simulations with Tunable Parameters” on page 1-12
• “Comparing Simulink Coder and Simulink Compiler” on page 1-15
• “Rapid Accelerator Limitations” on page 1-17
• “Debug an Application for Deployment” on page 1-19
• “Export Simulink Model to Standalone FMU” on page 1-20
• “Generate, Modify and Deploy a MATLAB App for a Simulink Model” on page 1-24
• “Generate and Deploy a MATLAB App for a Model” on page 1-30
• “Simulation Callbacks for Deployable Applications” on page 1-35
• “Deploy an App with Live Simulation Results of Lorenz System” on page 1-40

1

Deploy an App Designer Simulation with Simulink Compiler
In this section...
“Deploying A Simulation App with Simulink Compiler” on page 1-2
“Running the Deployed Application” on page 1-6

This example walks you through the workflow of creating a simulation app in App Designer and using
Simulink Compiler to deploy it. The example explains the code that is used to build the app.

To open the example, type the following in the MATLAB® command window, or click the View
MATLAB Code button.

openExample('simulinkcompiler/DeployingASimulationAppUsingSimulinkCompilerExample')

Deploying A Simulation App with Simulink Compiler
In this example, we use an app that is prepared in the App Designer and deploy it with Simulink
Compiler.

Open and Explore Model

In this example, we use the model of a mass springer damper system. The mass-spring-damper model
consists of discrete mass nodes distributed throughout an object and interconnected via a network of
springs and dampers. This model is well-suited for modelling object with complex material properties
such as non-linearity and elasticity. In this example we use the mass spring damper system. The
system is parametrized by mass (m), spring stiffness (k), damping (b) and the initial position (x0). The
input to the system is the applied force.

To explore this model with different values of the tunable parameters, create the following model
workspace variables:

• Mass - m.

• Spring stiffness - k.

• Damping - b.

• Initial position - xo.

To create the model workspace variables, go to the Modelling tab and select Model Workspace in
the Data Repositories in the Design section. Use the Add MATLAB Variables icon to add the
above four variables. Add the appropriate initial values, for example, 3, 128, 2 and 0.5 respectively.

open_system('MassSpringDamperModel');

1 Simulink Compiler

1-2

Create the App in App Designer

Use the MATLAB APP Designer to create an app to simulate the model with different parameter
values and input signals. To learn more about how to create an app using the App Designer, see
“Create and Run a Simple App Using App Designer” Use the MassSpringDamperApp.mlapp file to
use the app.

MassSpringDamperApp

 Deploy an App Designer Simulation with Simulink Compiler

1-3

App Details

The main part for the app is the simulate button callback function. It has the following salient parts:
setup the SimulationInput object, configure it for deployment, simulate, and plot the simulation
results.

The functionality of the application to change and experiment with the tunable parameters is defined
in the callback function SimulateButtonPushed. This callback function enables you to
change,experiment and analyze different simulations by modifying the values in the app designer.

SimulateButtonPushed Callback Function Code

This section explains the code written to create the app, MassSpringDamperApp. The callback
function SimulateButtonPushed is called in the app designed in the App Designer. This callback
function defines how the model is simulated. We use the Simulink.SimulationInput object to set
the variables to the model and use these variables to change the values and analyze the model.

Create the Simulink.SimulationInput Object in the SimulateButtonPushed Function

In the SimulateButtonPushed function, create a SimulationInput object, SimInp for the model
MassSpringDamperModel. Use the setModelParameters method on the SimulationInput
object. In this example, we set the StopTime model parameter for the simulation.

1 Simulink Compiler

1-4

Set the Values of the Tunable Parameters and the Input Signal

To set the input signal to the model, use the ExternalInput property of the
Simulink.SimulationInput object, simInp. Use the setVariables method to set the values of
the four tunable parameters. Create the force input signal and set it as the ExternalInput in the
simulation input object.

Configure for Deployment

Now that we have assigned all the values to the variables and set the input signal, the
Simulink.SimulationInput object is required to be configured for deployment. Use the
simulink.compiler.configureForDeployment function of Simulink Compiler. This function
handles all the settings required for the script to be compatible for deployment by setting the
simulation mode to rapid accelerator, and by setting the parameter
RapidAcceleratorUpToDateCheck to off.

Simulate and Plot the Results

Use the configured Simulink.SimulationInput object to run the simulation with the sim command.
Plot the results from the simulation using the Simulink.SimulationOutput object, simOut.

 Deploy an App Designer Simulation with Simulink Compiler

1-5

Test Out the Application in App Designer

Before deploying the application, ensure that the app runs in the App Designer. Click the Simulate
button on the app to verify that the application works by simulating the model for different values.

Compile Script for Deployment

To compile the app, use the mcc command, followed by the script name.

mcc -m MassSpringDamperApp.mlapp

Running the Deployed Application
Install MATLAB Runtime and Package the Deployable

To run the deployed executable, you need an appropriate runtime environment. For more information,
see “MATLAB Runtime”.

Ensure that the path environment variable is free of other instances of MATLAB Runtime from
previous installs. If there are any, remove them.

To install MATLAB Runtime, follow the instructions on “Install and Configure the MATLAB Runtime”.

Compile the deployable for the first time as follows:

1 Enter deploytool command in the MATLAB Command Window and select Application
Compiler.

2 In the Main File section, add the file to be deployed, MassSpringDamperApp.mlapp
3 In the Packaging Options section on the toolstrip, select Runtime included in package and

enter the deployed_installer in the text box.
4 Click Package in the Package section of the toolstrip.
5 Once the package is ready, use the deployed_installer in the for_redistribution folder

to install the proper runtime environment for running the deployed application.

1 Simulink Compiler

1-6

Run the Deployed Application

You can run the deployed script only on the platform that the deployed script was developed on.

It is recommended to run the deployed application from the Windows Command Prompt. Running the
deployed application from the command prompt also enables the script to print errors when
something is wrong in the deployed application. These errors can help troubleshoot the problem.

Note The MassSpringDamperApp.mlapp contains errordlg, and errordlg is not supported on
Web Apps.

See Also
Simulink.SimulationInput | deploytool | mcc |
simulink.compiler.configureForDeployment

More About
• “Create and Deploy a Script with Simulink Compiler”
• “Deploy Simulations with Tunable Parameters” on page 1-12
• “Simulation Callbacks for Deployable Applications” on page 1-35

 Deploy an App Designer Simulation with Simulink Compiler

1-7

Deploying A Simulation App with Simulink Compiler
In this example, we use an app that is prepared in the App Designer and deploy it with Simulink
Compiler.

Open and Explore Model

In this example, we use the model of a mass springer damper system. The mass-spring-damper model
consists of discrete mass nodes distributed throughout an object and interconnected via a network of
springs and dampers. This model is well-suited for modelling object with complex material properties
such as non-linearity and elasticity. In this example we use the mass spring damper system. The
system is parametrized by mass (m), spring stiffness (k), damping (b) and the initial position (x0). The
input to the system is the applied force.

To explore this model with different values of the tunable parameters, create the following model
workspace variables:

• Mass - m.

• Spring stiffness - k.

• Damping - b.

• Initial position - xo.

To create the model workspace variables, go to the Modelling tab and select Model Workspace in
the Data Repositories in the Design section. Use the Add MATLAB Variables icon to add the
above four variables. Add the appropriate initial values, for example, 3, 128, 2 and 0.5 respectively.

open_system('MassSpringDamperModel');

Create the App in App Designer

Use the MATLAB APP Designer to create an app to simulate the model with different parameter
values and input signals. To learn more about how to create an app using the App Designer, see
“Create and Run a Simple App Using App Designer” Use the MassSpringDamperApp.mlapp file to
use the app.

1 Simulink Compiler

1-8

MassSpringDamperApp

App Details

The main part for the app is the simulate button callback function. It has the following salient parts:
setup the SimulationInput object, configure it for deployment, simulate, and plot the simulation
results.

The functionality of the application to change and experiment with the tunable parameters is defined
in the callback function SimulateButtonPushed. This callback function enables you to
change,experiment and analyze different simulations by modifying the values in the app designer.

SimulateButtonPushed Callback Function Code

This section explains the code written to create the app, MassSpringDamperApp. The callback
function SimulateButtonPushed is called in the app designed in the App Designer. This callback
function defines how the model is simulated. We use the Simulink.SimulationInput object to set
the variables to the model and use these variables to change the values and analyze the model.

Create the Simulink.SimulationInput Object in the SimulateButtonPushed Function

 Deploying A Simulation App with Simulink Compiler

1-9

In the SimulateButtonPushed function, create a SimulationInput object, SimInp for the model
MassSpringDamperModel. Use the setModelParameters method on the SimulationInput
object. In this example, we set the StopTime model parameter for the simulation.

Set the Values of the Tunable Parameters and the Input Signal

To set the input signal to the model, use the ExternalInput property of the
Simulink.SimulationInput object, simInp. Use the setVariables method to set the values of
the four tunable parameters. Create the force input signal and set it as the ExternalInput in the
simulation input object.

Configure for Deployment

Now that we have assigned all the values to the variables and set the input signal, the
Simulink.SimulationInput object is required to be configured for deployment. Use the
simulink.compiler.configureForDeployment function of Simulink Compiler. This function
handles all the settings required for the script to be compatible for deployment by setting the
simulation mode to rapid accelerator, and by setting the parameter
RapidAcceleratorUpToDateCheck to off.

Simulate and Plot the Results

Use the configured Simulink.SimulationInput object to run the simulation with the sim command.
Plot the results from the simulation using the Simulink.SimulationOutput object, simOut.

1 Simulink Compiler

1-10

Test Out the Application in App Designer

Before deploying the application, ensure that the app runs in the App Designer. Click the Simulate
button on the app to verify that the application works by simulating the model for different values.

Compile Script for Deployment

To compile the app, use the mcc command, followed by the script name.

mcc -m MassSpringDamperApp.mlapp

 Deploying A Simulation App with Simulink Compiler

1-11

Deploy Simulations with Tunable Parameters
With Simulink Compiler, you can deploy simulations that use tunable parameters.

As you construct a model, you can experiment with block parameters, such as the coefficients of a
Transfer Fcn block, to help you decide which blocks to use. You can simulate the model with different
parameter values, and capture and observe the simulation output.

You can change the values of most numeric block parameters during a simulation. This technique
allows you to quickly test parameter values while you develop an algorithm. You can:

• Tune and optimize control parameters.
• Calibrate model parameters.
• Test control robustness under different conditions.

The following example shows how to set a tunable parameter in a model, write a standalone
application that can be used to tune the parameters, and analyze the simulations. For more
information on tunable parameters, see “Tune and Experiment with Block Parameter Values”.

Prepare a Script to Deploy Simulations with Parameter Tuning
In this example, create a MATLAB function to simulate the model sldemo_suspn_3dof with the
values of Simulink.SimulationInput. Save the script as deployParameterTuning.m on the
MATLAB path.

Prepare a Function to Deploy

Create a function called deployParameterTuning containing the code shown below. This code
creates a Simulink.SimulationInput object for the model sldemo_suspn_3dof. mb is the value
that we pass through the setVariable method for the tunable parameter, Mb. To configure this
script to be deployed, use the function simulink.compiler.configureForDeployment.
simulink.compiler.configureForDeployment configures the Simulink.SimulationInput
object for by deployment by setting its simulation mode to Rapid Accelerator and by restricting inputs
that require rebuilding the deployed app.

function deployParameterTuning(oName, mb)

 if ischar(mb) || isstring(mb)
 mb = str2double(mb);
 end

 if isnan(mb) || ~isa(mb, 'double') || ~isscalar(mb)
 disp('The value of mb given to deployParameterTuning must be a double scalar or a string or character that can be converted to a double scalar');
 end

 in = Simulink.SimulationInput('sldemo_suspn_3dof');
 in = in.setVariable('Mb', mb);
 in = simulink.compiler.configureForDeployment(in);
 out = sim(in);

 save(oName, 'out');

end

1 Simulink Compiler

1-12

Deploy the Prepared Function

1 On the Apps tab, in the Apps section, click the arrow. In Application Deployment, click
Application Compiler.

Alternately, you can open the Application Compiler app by entering applicationCompiler at
the MATLAB prompt.

2 In the Compiler project window, specify the main file of the MATLAB application that you want
to deploy.

a
In the Main File section, click .

b In the Add Files window, browse to path where you have saved the prepared function, and
select deployParameterTuning.m. Click Open.

The function deployParameterTuning.m is added to the list of main files.
3 Decide whether to include the MATLAB Runtime installer in the generated application by

selecting one of the two options in the Packaging Options section:

• Runtime downloaded from web — Generates an installer that downloads the MATLAB
Runtime and installs it along with the deployed MATLAB application.

• Runtime included in package — Generates an installer that includes the MATLAB Runtime
installer.

4 Customize the packaged application and its appearance:

• Application information — This section lists editable information about the deployed
application. You can also customize the standalone applications appearance by changing the
application icon and splash screen. The generated installer uses this information to populate
the installed application metadata. See “Customize the Installer”.

• Command line input type options — This section lists selection of input data types for the
standalone application. For more information, see “Determine Data Type of Command-Line
Input (For Packaging Standalone Applications Only)”.

• Additional installer options — Edit the default installation path for the generated installer
and selecting custom logo. See “Change the Installation Path” .

• Files required for your application to run —Files required by the generated application to
run. These files are included in the generated application installer. See “Manage Required
Files in Compiler Project”.

• Files installed for your end user — This section lists the files that are installed with your
application. These files include:

• A generated readme.txt file
• The generated executable for the target platform

See “Specify Files to Install with Application”.

 Deploy Simulations with Tunable Parameters

1-13

• Additional runtime settings —This section lists platform-specific options for controlling the
generated executable. See “Additional Runtime Settings”.

5 To generate the packaged application, click Package. In the Save Project dialog box, specify the
location to save the project.

6 In the Package dialog box, verify that Open output folder when process completes is
selected.

When the packaging process is complete, examine the generated output.

• PackagingLog.txt — Log file generated by MATLAB Compiler.
• Three folders are generated in the target folder location: for_redistribution,

for_redistribution_files_only, and for_testing. For more information about the
files generated in these folders, see .

See Also
Simulink.SimulationInput | configureForDeployment | deploytool | mcc | sim |
simulink.compiler.genapp

More About
• “Simulink Compiler Workflow Overview”
• “Tune and Experiment with Block Parameter Values”
• “Code Regeneration in Accelerated Models”

1 Simulink Compiler

1-14

Comparing Simulink Coder and Simulink Compiler
Simulink Compiler enables you to share Simulink simulations as standalone executables. You can
build the executables by packaging the compiled Simulink model and the MATLAB code to set up,
run, and analyze a simulation. Standalone executables can be complete simulation apps that use
MATLAB graphics and UIs designed with MATLAB App Designer. To cosimulate with an external
simulation environment, you can generate standalone Functional Mockup Unit (FMU) binaries that
adhere to the Functional Mockup Interface (FMI) standard.

Simulink Coder generates and executes C and C++ code from Simulink models, Stateflow® charts,
and MATLAB functions. The generated source code can be used for real-time and non-real-time
applications, rapid prototyping, and hardware-in-the-loop testing. You can tune and monitor the
generated code using Simulink or run and interact with the code outside MATLAB and Simulink.

Differences
The following table states the major comparisons between Simulink Compiler and Simulink Coder.
Use this table to understand the differences between the applications and usage of the two products.

Outputs and Support Simulink Compiler Simulink Coder
Main Use Case Deploy simulations as

standalone executables on
desktop or production servers

Generate portable C/C++ code
for Simulink model that can be
deployed on embedded
platforms or desktop

Output Executable or software
component or shared library

Portable and readable C/C++
source code

Simulink Block Support All the blocks supported in
Rapid Accelerator mode in
Simulink

A subset of Simulink blocks

Supported Blocksets All the blocksets supported by
Rapid Accelerator mode in
Simulink

A subset of Simulink blocks

Production MATLAB Production Server Embedded Coder
Simulink Graphics Support Supports MATLAB Graphics. None
Library Dependencies MATLAB Runtime None

Common Questions about Simulink Compiler and Simulink Coder
The following table answers some of the common questions about using Simulink Compiler and
Simulink Coder, such as the memory required, performance, and other questions about support.

Common Questions Simulink Compiler Simulink Coder
What files are produced? Shared executables or libraries,

along with the required
MATLAB Runtime components.

Source code (*.c & *.h) that
can be compiled into shared
libraries and executables

 Comparing Simulink Coder and Simulink Compiler

1-15

Common Questions Simulink Compiler Simulink Coder
Which platforms can these files
be deployed to?

All platforms supported by
MATLAB (Windows, Mac, and
Linux)

Any platform that supports
ANSI/ISO C/C++ code

Does it generate readable code? No, only non-readable shared
libraries

Yes, readable source code

Is it faster than Simulink? Runs at the same speed as
Rapid Accelerator mode in
Simulink.

Has the potential to be faster,
depending on the algorithm.
The generated code is not faster
for optimized MATLAB functions
(such as FFT, or Image
Processing, and Computer
Vision functions) Use GPU
Coder GPU Coder™ to generate
CUDA source code that
potentially runs faster on
NVIDIA GPUs.

Does it take advantage of
hardware accelerators?

Supports the same hardware as
MATLAB, including GPUs and
AVX. Multicore and clusters are
supported via Parallel
Computing Toolbox

C code running on local
multicore machines can be
supported using the OpenMP
API. Use GPU Coder to generate
CUDA source code that runs on
NVIDIA GPUs. Use HDL
Coder™ to generate Verilog or
VHDL that runs on FPGAs.

What is the difference in
memory use on a desktop?

Highly dependent on the
executables. MATLAB Runtime
itself uses more memory than
the Simulink Coder.

Highly dependent on the
MATLAB code.

What file I/O formats does each
software support?

Supports all formats supported
in MATLAB

Limited file support: text files,
audio, and video formats. Does
not support image formats.

See Also

More About
• “Simulink Compiler Workflow Overview”

1 Simulink Compiler

1-16

Rapid Accelerator Limitations

Rapid Accelerator Mode
The rapid accelerator mode creates a Rapid Accelerator standalone executable from your model. This
executable includes the solver and model methods, but it resides outside of MATLAB and Simulink. It
uses external mode to communicate with Simulink.

MATLAB and Simulink run in one process, and if a second processing core is available, the
standalone executable runs there.

Limitations
• Rapid Accelerator mode does not support:

• Algebraic loops.
• Targets written in C++.
• Interpreted MATLAB Function blocks.
• Noninlined MATLAB language or Fortran S-functions. You must write S-functions in C or inline

them using the Target Language Compiler (TLC) or you can also use the MEX file.
• Debugger or Profiler.
• Run time objects for Simulink.RunTimeBlock and Simulink.BlockCompOutputPortData blocks.

• Model parameters must be one of these data types:

• boolean
• uint8 or int8
• uint16 or int16
• uint32 or int32
• single or double
• Fixed-point
• Enumerated

• You cannot pause a simulation in Rapid Accelerator mode.
• If a Rapid Accelerator build includes referenced models (by using Model blocks), set up these

models to use fixed-step solvers to generate code for them. The top model, however, can use a
variable-step solver as long as the blocks in the referenced models are discrete.

• In certain cases, changing block parameters can result in structural changes to your model that
change the model checksum. An example of such a change is changing the number of delays in a
DSP simulation. In these cases, you must regenerate the code for the model. See “Code
Regeneration in Accelerated Models” for more information.

• For root inports, Rapid Accelerator mode supports only base as the Srcworkspace.
• For root inports, when you specify the minimum and maximum values that the block should

output, Rapid Accelerator mode does not recognize these limits during simulation.
• In Rapid Accelerator mode, To File or To Workspace blocks inside function-call subsystems do not

generate any logging files if the function-call port is connected to Ground or unconnected.
• Simulink Compiler does not support the use of Scope block and non-virtual bus.

 Rapid Accelerator Limitations

1-17

• Simulink Compiler does not support lcc-win64.
• Simulink Compiler does not support initialize, terminate, and reset blocks on referenced models.

See Also

More About
• “Simulink Compiler Workflow Overview”
• “Rapid Accelerator Mode”
• “Select Blocks for Rapid Accelerator Mode”
• “Parameter Tuning in Rapid Accelerator Mode”

1 Simulink Compiler

1-18

Debug an Application for Deployment
This topic provides high-level tips on debugging the standalone applications. The following lists
highlight the solutions and tips for most frequently encountered errors.

Debug Application in Simulink
Use the following tips while preparing the standalone application to be deployed:

• To ensure that the model runs successfully in rapid accelerator mode correctly, run the rapid
accelerator target in a writable directory.

• While writing the script, ensure that the sim command uses the Simulink.SimulationInput
object as the input.

• If you see the error "Unable to resolve the name Simulink.SimulationInput", check that the
model is on the path.

• If the dependent files are located in another directory, attach them by using the flag -a. For
example, mcc -m scriptName.m -a myDataFile.dat.

• If you are using a function as string, either:

– Add a function pragma %#function.

set(gca, 'ButtonDownFcn', 'foo'); % function foo is a string here.

%#function foo
set(gca, 'ButtonDownFcn', 'foo'); % function foo is a string here.

– Write it as an anonymous function

set(gca, 'ButtonDownFcn', @foo);

Debug Application
• Callback functions in the model might include functions that are not deployable. Ensure that the

functions in the callbacks of the model are deployable.
• Callback functions are not invoked at runtime. Ensure that the deployed simulation application

does not use callback functions that are required to be invoked at runtime.

See Also

More About
• “Simulink Compiler Workflow Overview”

 Debug an Application for Deployment

1-19

Export Simulink Model to Standalone FMU
This example shows how to export Simulink component to standalone Co-Simulation FMU 2.0 with
Simulink Compiler®. For a detailed explanation of the model, see:

• “Modeling a Fault-Tolerant Fuel Control System”

In this example, the air-fuel ratio control system is composed of three Simulink models:

• Fuel Rate Control Component: fmudemo_export_fuelsys_controller,
• Engine Gas Dynamics Component: fmudemo_export_fuelsys_plant, and
• top-level model fmudemo_export_fuelsys_top.

Once the controller and plant components are export to FMU format, they can be integrated using
the top-level model. The generated FMUs can also be imported into other simulation tools that
support FMI. For a list of Tools that support FMI, see: https://fmi-standard.org/tools/.

Export Fuel Rate Control Component to FMU

Open the fmudemo_export_fuelsys_controller example model.

From Simulation tab, click drop-down button for Save. In Export Model To section, click
Standalone FMU.... In FMU Export dialog, configure wrapper model and icon settings, and specify
save location for generated FMU.

1 Simulink Compiler

1-20

https://fmi-standard.org/tools/

Click Create to export to FMU. The fmudemo_export_fuelsys_controller.fmu file can be found
at specified save location.

Export Engine Gas Dynamics Component to FMU

Open the fmudemo_export_fuelsys_plant example model.

FMU can also be exported using command-line. In MATLAB command line window, use
exportToFMU2CS command:

% Export model to Standalone Co-Simulation FMU 2.0
exportToFMU2CS('fmudemo_export_fuelsys_plant', 'CreateModelAfterGeneratingFMU', 'off', 'AddIcon', 'snapshot', 'SaveDirectory', pwd);

You can use optional arguements CreateModelAfterGeneratingFMU, AddIcon, SaveDirectory to
configure FMU export settings. For more information, call help ExportToFMU2CS.

Integrate FMU components in Simulink

Once both FMUs are successfully exported, you may use the top model
fmudemo_export_fuelsys_top to fully integrate the system for testing.

 Export Simulink Model to Standalone FMU

1-21

1 Simulink Compiler

1-22

 Export Simulink Model to Standalone FMU

1-23

Generate, Modify and Deploy a MATLAB App for a Simulink
Model

The simulink.compiler.genapp enables you to automatically generate a MATLAB app for a
Simulink model. You can compile and deploy the automatically generated app using the mcc
command. The following example generates an app for a model, compiles and deploys it, and explores
how you can customize the app using the MATLAB App Designer.

Generate and Deploy a MATLAB App for a Model
This example shows you how to use the simulink.compiler.genapp function to generate a
MATLAB app for a model, that is deployable. Typically when a Simulink model is functionally
complete, it is often used to run multiple simulations different input and parameter values. To try
simulations for your model with different input and parameter values, you can generate a MATLAB
App. You can also deploy this generated app for use outside of MATLAB.

This example illustrates the use of simulink.compiler.genapp function to generate a starter app
for the model f14, using the generated app to tune the parameters of the model and simulate it, and
customizing the app in the MATLAB App Designer.

Open the Model

The simulink.compiler.example.AppGeneration command loads the example project on your
path. This project contains all the files required for this example including the model. Open the model
f14.

simulink.compiler.example.AppGeneration;
open_system(f14)

1 Simulink Compiler

1-24

Generate a MATLAB App for the Model

Use the simulink.compiler.genapp function to generate an app for the f14 model. Running the
simulink.compiler.genapp function with the model name as an argument generates an App
named f14app. Simulink Compiler uses a default template to generate the app. The generated app
provides an ability to tune the parameters and simulate the model for which the app is generated.
The generated app also provides the plot of the simulation results. All the files are generated into the
f14app directory.

simulink.compiler.genapp('f14', 'AppName', 'f14app');

After generating the app, Click Simulate to simulate the app.

 Generate, Modify and Deploy a MATLAB App for a Simulink Model

1-25

Along with the app, the following artifacts are generated :

• f14app.mlapp file -- This file contains the code for the generated app. Open this file in App
Designer for editing.

• Files starting with the default prefix -- Functions returning default values used by the app such
as, model name, model image aspect ratio, model image file, and input MAT-file name.

• Model Image, (f14app_image.svg) -- Image of the Simulink Model.
• Inputs used in the simulation (f14app_inputs.mat) -- MAT file containing all the inputs that are

used in the simulation of the model.
• App labels file setLabels.m -- File specifying label contents.
• Default Simulink logo (SimulinkLogo.png) -- File used as a placeholder for the model image.
• pragma.m directives file -- File used by Simulink Compiler to generate the deployable app.
• Set of MATLAB functions as M-files -- Files that the app uses to control user interface of the app.

Compile and Deploy the Generated App

You can use the MATLAB App Designer to compile and deploy the app. You can also use deploytool.
For more information on compiling and deploying with App Designer, see Develop Apps Using App
Designer, Web Apps and Application Compiler.

1 Simulink Compiler

1-26

https://www.mathworks.com/help/matlab/app-designer.html
https://www.mathworks.com/help/matlab/app-designer.html
https://www.mathworks.com/help/compiler/web-apps.html
https://www.mathworks.com/help/compiler/applicationcompiler-app.html

In this example, we compile the app, with the mcc command followed by the app name.

mcc -m f14App

Customize the Generated App

You can also customize the generated app. To customize the app, use the App designer. The
generated app f14 is generic, but it allows you to eailiy customize it in the App Designer. In this
section, we are going to replace the one axis in the generated app with two axes. Open the generated
app in the app designer.

appdesigner('f14app');

The idea of customization is to replace the Axes component with two Axes components. To get two
Axes components, use a grid with two rows and one column and placing the two components in the
grid cells (the customized app, f14customapp is included as a part of this example project file for
your reference). You can follow:

1 In Design View, select and delete the default Axes component.
2 Go to Component Library on the left side of the window. From the Component Library, drag

and drop a Grid Layout component under the Containers section in place of the removed Axes
component. In Component Browser on the right, on the Inspection tab under the Grid
Layout, update ColumnWidth and RowHeight properties to '1x' and '1x,1x', respectively.
This updates the grid to have two vertical cells. Drag two Axes components from the Common
section in Component Library and place them in the two grid cells.

3 The external input references to UIAxes (the original Axes component) have to be updated to
UIAxes2. If you added the top Axes first, UIAxes refers to Logged Signals and UIAxes2 to
External Inputs. You can check by switching to Design View and verifying which Axes gets
the focus when the component is selected in Component Browser.

4 Now find and replace these occurrences in the Code View. Using the Find & Replace dialog,
replace UIAxes with UIAxes2 or additions. Once you complete the replacements, add the
following line code to the cbkSimulate(app, event) function. After the line for UIAxes:
app.SimulationHelper.UserInterface.clearGridAndLegend(app.UIAxes2).

5 Save the app.

 Generate, Modify and Deploy a MATLAB App for a Simulink Model

1-27

Use the Modified App to Simulate the Model

Now that you have modified the app to show two axes, you can use that app to simulate the model.
You can then compile and deploy the app. To simulate the app, click Load Input MAT-file and choose
the u.mat file to attach an external input signal to Inport 1 of the f14 model. This activates the
External Input drop down and displays the loaded signal, Signal.RandomStickPosition in the
list box under the drop down. Select the loaded signal to display in the bottom Axes component. Click
Simulate. After the simulation completes, the two Axes components update. You can observe the
effect of the loaded input signal on the logged signals in the top Axes.

1 Simulink Compiler

1-28

See Also
deploytool | mcc | sim | simulink.compiler.configureForDeployment |
simulink.compiler.genapp

More About
• “Deploy an App Designer Simulation with Simulink Compiler” on page 1-2
• “Ways to Build Apps”

 Generate, Modify and Deploy a MATLAB App for a Simulink Model

1-29

Generate and Deploy a MATLAB App for a Model
This example shows you how to use the simulink.compiler.genapp function to generate a
MATLAB app for a model, that is deployable. Typically when a Simulink model is functionally
complete, it is often used to run multiple simulations different input and parameter values. To try
simulations for your model with different input and parameter values, you can generate a MATLAB
App. You can also deploy this generated app for use outside of MATLAB.

This example illustrates the use of simulink.compiler.genapp function to generate a starter app
for the model f14, using the generated app to tune the parameters of the model and simulate it, and
customizing the app in the MATLAB App Designer.

Open the Model

The simulink.compiler.example.AppGeneration command loads the example project on your
path. This project contains all the files required for this example including the model. Open the model
f14.

simulink.compiler.example.AppGeneration;
open_system(f14)

Generate a MATLAB App for the Model

Use the simulink.compiler.genapp function to generate an app for the f14 model. Running the
simulink.compiler.genapp function with the model name as an argument generates an App
named f14app. Simulink Compiler uses a default template to generate the app. The generated app

1 Simulink Compiler

1-30

provides an ability to tune the parameters and simulate the model for which the app is generated.
The generated app also provides the plot of the simulation results. All the files are generated into the
f14app directory.

simulink.compiler.genapp('f14', 'AppName', 'f14app');

After generating the app, Click Simulate to simulate the app.

Along with the app, the following artifacts are generated :

• f14app.mlapp file -- This file contains the code for the generated app. Open this file in App
Designer for editing.

• Files starting with the default prefix -- Functions returning default values used by the app such
as, model name, model image aspect ratio, model image file, and input MAT-file name.

• Model Image, (f14app_image.svg) -- Image of the Simulink Model.
• Inputs used in the simulation (f14app_inputs.mat) -- MAT file containing all the inputs that are

used in the simulation of the model.
• App labels file setLabels.m -- File specifying label contents.
• Default Simulink logo (SimulinkLogo.png) -- File used as a placeholder for the model image.

 Generate and Deploy a MATLAB App for a Model

1-31

• pragma.m directives file -- File used by Simulink Compiler to generate the deployable app.
• Set of MATLAB functions as M-files -- Files that the app uses to control user interface of the app.

Compile and Deploy the Generated App

You can use the MATLAB App Designer to compile and deploy the app. You can also use deploytool.
For more information on compiling and deploying with App Designer, see Develop Apps Using App
Designer, Web Apps and Application Compiler.

In this example, we compile the app, with the mcc command followed by the app name.

mcc -m f14App

Customize the Generated App

You can also customize the generated app. To customize the app, use the App designer. The
generated app f14 is generic, but it allows you to eailiy customize it in the App Designer. In this
section, we are going to replace the one axis in the generated app with two axes. Open the generated
app in the app designer.

appdesigner('f14app');

The idea of customization is to replace the Axes component with two Axes components. To get two
Axes components, use a grid with two rows and one column and placing the two components in the
grid cells (the customized app, f14customapp is included as a part of this example project file for
your reference). You can follow:

1 In Design View, select and delete the default Axes component.
2 Go to Component Library on the left side of the window. From the Component Library, drag

and drop a Grid Layout component under the Containers section in place of the removed Axes
component. In Component Browser on the right, on the Inspection tab under the Grid
Layout, update ColumnWidth and RowHeight properties to '1x' and '1x,1x', respectively.
This updates the grid to have two vertical cells. Drag two Axes components from the Common
section in Component Library and place them in the two grid cells.

3 The external input references to UIAxes (the original Axes component) have to be updated to
UIAxes2. If you added the top Axes first, UIAxes refers to Logged Signals and UIAxes2 to
External Inputs. You can check by switching to Design View and verifying which Axes gets
the focus when the component is selected in Component Browser.

4 Now find and replace these occurrences in the Code View. Using the Find & Replace dialog,
replace UIAxes with UIAxes2 or additions. Once you complete the replacements, add the
following line code to the cbkSimulate(app, event) function. After the line for UIAxes:
app.SimulationHelper.UserInterface.clearGridAndLegend(app.UIAxes2).

5 Save the app.

1 Simulink Compiler

1-32

https://www.mathworks.com/help/matlab/app-designer.html
https://www.mathworks.com/help/matlab/app-designer.html
https://www.mathworks.com/help/compiler/web-apps.html
https://www.mathworks.com/help/compiler/applicationcompiler-app.html

Use the Modified App to Simulate the Model

Now that you have modified the app to show two axes, you can use that app to simulate the model.
You can then compile and deploy the app. To simulate the app, click Load Input MAT-file and choose
the u.mat file to attach an external input signal to Inport 1 of the f14 model. This activates the
External Input drop down and displays the loaded signal, Signal.RandomStickPosition in the
list box under the drop down. Select the loaded signal to display in the bottom Axes component. Click
Simulate. After the simulation completes, the two Axes components update. You can observe the
effect of the loaded input signal on the logged signals in the top Axes.

 Generate and Deploy a MATLAB App for a Model

1-33

1 Simulink Compiler

1-34

Simulation Callbacks for Deployable Applications
With certain functions in Simulink Compiler, you can register callbacks during simulation. The
simulink.compiler.setExternalInputsFcn and
simulink.compiler.setExternalOutputsFcn functions enable you to set the values at the root
inport blocks and to obtain the values at the root outport blocks at every simulation step. With the
simulink.compiler.setPostStepFcn function, you can register a callback that is invoked after
every simulation step, thus using it to post process the outputs.

The following example uses the simulink.compiler.setExternalOutputsFcn and the
simulink.compiler.setPostStepFcn, to provide an ongoing tracing of the simulation outputs.

Deploy an App with Live Simulation Results of Lorenz System
This example shows an app that uses callbacks for simulation inputs and outputs to view the
simulation of a Simulink model of Lorenz System, and is then deployed with Simulink Compiler

Open and Examine the Project File

In this example, we use a Simulink Project that contains all the files required to run this example. The
project contains a Simulink Model of Lorenz System and A MATLAB App, created in App Designer
that simulates the model with different input and output values. To learn more about how to create an
app using the App Designer, see “Create and Run a Simple App Using App Designer”.

simulink.compiler.example.LorenzSystem

 Simulation Callbacks for Deployable Applications

1-35

App Details

Open the mlapp file. You can view the code written to create this app in Code View section of the

1 Simulink Compiler

1-36

app designer. The essential part of this app is the behavior of the Simulate button. It has the
following salient parts: creating the SimulationInput object, configureing it for deployment, using
simulation callbacks to read the output port data and plot the data at each time step. The following
section explains how these three functions are used to see the live results of the simulation in the
deployed app

Creating the Simulink.SimulationInput object

In the function createSimulationInput, we define an empty Simulink.SimulationInput
object for the model. We use this Simulink.SimulationInput object to set simulation callbacks
and variables for the model to simulate with.

The simulation callback functions are used to register the callbacks. The
simulink.compiler.setPostStepFcn function registers a callback that is invoked after every
simulation step. The simulink.compiler.setExternalOuputsFcn registers a callback that
dynamically processes the values for every output port at root level of a model during simulation.

We use the setVariable method of the Simulink.SimulationInput object to provide the
parameter values to the app. These values for the simulation are obtained from the edit fields of the
UI of the app. To enable deployment of the app, we use the
simulink.compiler.configureForDeployment function. (Comment the line of code that calls
simulink.compiler.configureForDeployment function for faster debugging)

function simInp = createSimulationInput(app)
 % Create an empty SimulationInput object
 simInp = Simulink.SimulationInput('LorenzSystemModel');

 % Specify the simulation callbacks
 simInp = simulink.compiler.setPostStepFcn(simInp, @app.postStepFcn);
 simInp = simulink.compiler.setExternalOutputsFcn(simInp, @app.processOutputs);

 % Load the parameters values from the ui edit fields
 simInp = simInp.setVariable('rho',app.rhoUIC.Value);
 simInp = simInp.setVariable('beta',app.betaUIC.Value);
 simInp = simInp.setVariable('sigma',app.sigmaUIC.Value);
 simInp = simInp.setVariable('x0',app.x0UIC.Value);
 simInp = simInp.setVariable('y0',app.y0UIC.Value);
 simInp = simInp.setVariable('z0',app.z0UIC.Value);

 % Configure simInp for deployment
 % DEBUG TIP: Comment out the line below for
 % faster/easier debugging when runnng in MATLAB
 simInp = simulink.compiler.configureForDeployment(simInp);
 end % createSimulationInput

Simulation Callback functions

The simulation callback functions register callbacks to enable you to read values from the output
ports and to wrtie values to the root input ports. These functions register callbacks at every
simulation time step thus allowing you to view live results of the simulation.

The processOutputs Callback

The simulink.compiler.setExternalOutputsFcn line refers to the function
postprocressOuputs. This is a callback function that processes the values for every root output
port block of model during simulation. The postprocressOuputs function is called once per port,

 Simulation Callbacks for Deployable Applications

1-37

and per the port's sample time. When postprocressOuputs function is called, it reads the values
for every root outport block and caches away those values. The postStepFcn obtains the cached
values to update the plot.

 function processOutputs(app, opIdx, ~, data)
 % Called during sim to process the external output port data,
 % will be called once per port per its sample hit.
 switch opIdx
 case 1
 app.txyzBuffer.x = data;
 case 2
 app.txyzBuffer.y = data;
 case 3
 app.txyzBuffer.z = data;
 otherwise
 error(['Invalid port index: ', num2str(opIdx)]);
 end
 end

The PostStepFcn Callback

The postStepFcn is a callback function that is invoked after every simulation step. The time
argument is the time for the previous simulation step. This function obtains the cached outport block
values for every time, and passes those values to the updateTrace function to plot the cached
values at simulation time.

function postStepFcn(app, time)
 % Called during sim after each simulation time step
 app.updateSimStats(time);
 if app.status == AppStatus.Starting
 app.switchStatus(AppStatus.Running);
 app.simStats.WallClockTimeAfterFirstStep = tic;
 end
 if app.stopRequested
 app.switchStatus(AppStatus.Stopping);
 stopRequestedID = [mfilename('class'), ':StopRequested'];
 throw(MException(stopRequestedID, 'Stop requested'));
 end
 %--
 app.txyzBuffer.t = time;
 x = [app.txyzBuffer.x];
 y = [app.txyzBuffer.y];
 z = [app.txyzBuffer.z];
 app.updateTrace(x, y, z);
 app.updateMarker('head', x, y, z);
 %--
 drawnow limitrate;
 end % postStepFcn

Test Out the Application in App Designer

Before deploying the application, ensure that the app runs in the App Designer. Click Simulate to
verify that the application works by simulating the model for different values.

1 Simulink Compiler

1-38

Compile App for Deployment

. You can use the MATLAB App Designer to compile and deploy the app. You can also use
deploytool. For more information on compiling and deploying with App Designer, see Develop Apps
Using App Designer, Web Apps and Application Compiler.

In this example, we compile the app, with the mcc command followed by the app name.

mcc -m LorenzSystemApp

See Also
Simulink.SimulationInput | configureForDeployment | deploytool | mcc | sim |
simulink.compiler.genapp | simulink.compiler.setExternalInputsFcn |
simulink.compiler.setExternalOutputsFcn | simulink.compiler.setPostStepFcn

More About
• “Simulink Compiler Workflow Overview”
• “Deploy an App Designer Simulation with Simulink Compiler” on page 1-2
• “Deploy Simulations with Tunable Parameters” on page 1-12

 Simulation Callbacks for Deployable Applications

1-39

https://www.mathworks.com/help/matlab/app-designer.html
https://www.mathworks.com/help/matlab/app-designer.html
https://www.mathworks.com/help/compiler/web-apps.html
https://www.mathworks.com/help/compiler/applicationcompiler-app.html

Deploy an App with Live Simulation Results of Lorenz System
This example shows an app that uses callbacks for simulation inputs and outputs to view the
simulation of a Simulink model of Lorenz System, and is then deployed with Simulink Compiler

Open and Examine the Project File

In this example, we use a Simulink Project that contains all the files required to run this example. The
project contains a Simulink Model of Lorenz System and A MATLAB App, created in App Designer
that simulates the model with different input and output values. To learn more about how to create an
app using the App Designer, see “Create and Run a Simple App Using App Designer”.

simulink.compiler.example.LorenzSystem

1 Simulink Compiler

1-40

App Details

Open the mlapp file. You can view the code written to create this app in Code View section of the

 Deploy an App with Live Simulation Results of Lorenz System

1-41

app designer. The essential part of this app is the behavior of the Simulate button. It has the
following salient parts: creating the SimulationInput object, configureing it for deployment, using
simulation callbacks to read the output port data and plot the data at each time step. The following
section explains how these three functions are used to see the live results of the simulation in the
deployed app

Creating the Simulink.SimulationInput object

In the function createSimulationInput, we define an empty Simulink.SimulationInput
object for the model. We use this Simulink.SimulationInput object to set simulation callbacks
and variables for the model to simulate with.

The simulation callback functions are used to register the callbacks. The
simulink.compiler.setPostStepFcn function registers a callback that is invoked after every
simulation step. The simulink.compiler.setExternalOuputsFcn registers a callback that
dynamically processes the values for every output port at root level of a model during simulation.

We use the setVariable method of the Simulink.SimulationInput object to provide the
parameter values to the app. These values for the simulation are obtained from the edit fields of the
UI of the app. To enable deployment of the app, we use the
simulink.compiler.configureForDeployment function. (Comment the line of code that calls
simulink.compiler.configureForDeployment function for faster debugging)

function simInp = createSimulationInput(app)
 % Create an empty SimulationInput object
 simInp = Simulink.SimulationInput('LorenzSystemModel');

 % Specify the simulation callbacks
 simInp = simulink.compiler.setPostStepFcn(simInp, @app.postStepFcn);
 simInp = simulink.compiler.setExternalOutputsFcn(simInp, @app.processOutputs);

 % Load the parameters values from the ui edit fields
 simInp = simInp.setVariable('rho',app.rhoUIC.Value);
 simInp = simInp.setVariable('beta',app.betaUIC.Value);
 simInp = simInp.setVariable('sigma',app.sigmaUIC.Value);
 simInp = simInp.setVariable('x0',app.x0UIC.Value);
 simInp = simInp.setVariable('y0',app.y0UIC.Value);
 simInp = simInp.setVariable('z0',app.z0UIC.Value);

 % Configure simInp for deployment
 % DEBUG TIP: Comment out the line below for
 % faster/easier debugging when runnng in MATLAB
 simInp = simulink.compiler.configureForDeployment(simInp);
 end % createSimulationInput

Simulation Callback functions

The simulation callback functions register callbacks to enable you to read values from the output
ports and to wrtie values to the root input ports. These functions register callbacks at every
simulation time step thus allowing you to view live results of the simulation.

The processOutputs Callback

The simulink.compiler.setExternalOutputsFcn line refers to the function
postprocressOuputs. This is a callback function that processes the values for every root output
port block of model during simulation. The postprocressOuputs function is called once per port,

1 Simulink Compiler

1-42

and per the port's sample time. When postprocressOuputs function is called, it reads the values
for every root outport block and caches away those values. The postStepFcn obtains the cached
values to update the plot.

 function processOutputs(app, opIdx, ~, data)
 % Called during sim to process the external output port data,
 % will be called once per port per its sample hit.
 switch opIdx
 case 1
 app.txyzBuffer.x = data;
 case 2
 app.txyzBuffer.y = data;
 case 3
 app.txyzBuffer.z = data;
 otherwise
 error(['Invalid port index: ', num2str(opIdx)]);
 end
 end

The PostStepFcn Callback

The postStepFcn is a callback function that is invoked after every simulation step. The time
argument is the time for the previous simulation step. This function obtains the cached outport block
values for every time, and passes those values to the updateTrace function to plot the cached
values at simulation time.

function postStepFcn(app, time)
 % Called during sim after each simulation time step
 app.updateSimStats(time);
 if app.status == AppStatus.Starting
 app.switchStatus(AppStatus.Running);
 app.simStats.WallClockTimeAfterFirstStep = tic;
 end
 if app.stopRequested
 app.switchStatus(AppStatus.Stopping);
 stopRequestedID = [mfilename('class'), ':StopRequested'];
 throw(MException(stopRequestedID, 'Stop requested'));
 end
 %--
 app.txyzBuffer.t = time;
 x = [app.txyzBuffer.x];
 y = [app.txyzBuffer.y];
 z = [app.txyzBuffer.z];
 app.updateTrace(x, y, z);
 app.updateMarker('head', x, y, z);
 %--
 drawnow limitrate;
 end % postStepFcn

Test Out the Application in App Designer

Before deploying the application, ensure that the app runs in the App Designer. Click Simulate to
verify that the application works by simulating the model for different values.

 Deploy an App with Live Simulation Results of Lorenz System

1-43

Compile App for Deployment

. You can use the MATLAB App Designer to compile and deploy the app. You can also use
deploytool. For more information on compiling and deploying with App Designer, see Develop Apps
Using App Designer, Web Apps and Application Compiler.

In this example, we compile the app, with the mcc command followed by the app name.

mcc -m LorenzSystemApp

1 Simulink Compiler

1-44

https://www.mathworks.com/help/matlab/app-designer.html
https://www.mathworks.com/help/matlab/app-designer.html
https://www.mathworks.com/help/compiler/web-apps.html
https://www.mathworks.com/help/compiler/applicationcompiler-app.html

	Simulink Compiler
	Deploy an App Designer Simulation with Simulink Compiler
	Deploying A Simulation App with Simulink Compiler
	Running the Deployed Application

	Deploying A Simulation App with Simulink Compiler
	Deploy Simulations with Tunable Parameters
	Prepare a Script to Deploy Simulations with Parameter Tuning

	Comparing Simulink Coder and Simulink Compiler
	Differences
	Common Questions about Simulink Compiler and Simulink Coder

	Rapid Accelerator Limitations
	Rapid Accelerator Mode
	Limitations

	Debug an Application for Deployment
	Debug Application in Simulink
	Debug Application

	Export Simulink Model to Standalone FMU
	Generate, Modify and Deploy a MATLAB App for a Simulink Model
	Generate and Deploy a MATLAB App for a Model

	Generate and Deploy a MATLAB App for a Model
	Simulation Callbacks for Deployable Applications
	Deploy an App with Live Simulation Results of Lorenz System

	Deploy an App with Live Simulation Results of Lorenz System

